Füsikaalisk ianhaid
Nööm
Kwadrootgraad
Ianhaidentiaken
d
e
g
2
{\displaystyle \mathrm {deg^{2}} }
,
s
q
.
d
e
g
.
{\displaystyle \mathrm {sq.deg.} }
,
(
∘
)
2
{\displaystyle \mathrm {(^{\circ })^{2}} }
Füsikaalisk grate
Rümwinkel
Formeltiaken
Ω
{\displaystyle \Omega }
Dimension
L
2
L
2
=
1
{\displaystyle {\mathsf {{\frac {L^{2}}{L^{2}}}=1}}}
Uun SI -ianhaiden
1
d
e
g
2
=
π
2
32
400
s
r
{\displaystyle \mathrm {1\ deg^{2}={\frac {\pi ^{2}}{32\,400}}\;sr} }
At kwadrootgraad (deg² , (°)² ) (ingelsk square degree of sq degree ) as en ianhaid för di rümwinkel . Hat woort brükt uun a astronomii för't ütjmeeden faan objekten üüb a stäärhemel.
Letjer ianhaiden san:
Kwadroot-böögminüüt (ingelsk square arcmin )
=
1
3600
{\displaystyle ={\frac {1}{3600}}}
kwadrootgraad
Kwadroot-böögsekund (ingelsk square arcsec )
=
1
3600
{\displaystyle ={\frac {1}{3600}}}
kwadrootminüüten
=
1
12
960
000
{\displaystyle ={\frac {1}{12\,960\,000}}}
kwadrootgraad.
Di fol rümwinkel as
4
π
{\displaystyle 4\pi }
sr =
(
360
d
e
g
)
2
π
≈
41
253
d
e
g
2
{\displaystyle {\frac {(360\ \mathrm {deg} )^{2}}{\pi }}\approx 41\,253\ \mathrm {deg^{2}} }
.
Amreegnang tu steradiant :
⇔
1
d
e
g
2
=
(
2
π
360
)
2
s
r
=
(
π
180
)
2
s
r
=
π
2
32
400
s
r
≈
3,046
1741
⋅
10
−
4
s
r
≈
0,000
30461741
s
r
{\displaystyle {\begin{aligned}\Leftrightarrow 1\ \mathrm {deg} ^{2}&=\left({\frac {2\pi }{360}}\right)^{2}\ \mathrm {sr} \\&=\left({\frac {\pi }{180}}\right)^{2}\ \mathrm {sr} \\&={\frac {\pi ^{2}}{32\,400}}\ \mathrm {sr} \\&\approx 3{,}0461741\cdot 10^{-4}\ \mathrm {sr} \\&\approx 0{,}00030461741\ \mathrm {sr} \end{aligned}}}
of
⇔
1
s
r
≈
3283
d
e
g
2
{\displaystyle \Leftrightarrow 1\ \mathrm {sr} \approx 3283\ \mathrm {deg} ^{2}}
För letjer winkel san rümwinkel bal lik üs en areaal , do as en objekt mä en winkel faan 1 graad mool 1 graad amanbi = 1 kwadrootgraad.