"Areaal (Maat)" üp üđer Spreekwiisen
Füsikālisk Maaten
Noom
Areaal
Formelteeken fan't Maat
A
{\displaystyle A}
,
F
{\displaystyle F}
Hinget töhop me
Leengdi
Dit Areaal es dit Maat fuar di Gurthair fan en geomeetrisk Objekt. Areaalen sen tau-dimensionaal, en diar hiir geomeetrisk Grünjforemen tö sa üs dit Kwadraat , dit Rochthuk , Triihuk of di Krais .
Uk di Bütensiren fan trii-dimensionaali Objekti sa üs Kuugel , Silinder of Rochtkant sen Areaali.
Objekt
Beteekningen
Areaal
A
{\displaystyle A}
Kwadraat
Sidjenlengde
a
{\displaystyle a}
A
=
a
2
{\displaystyle A=a^{2}}
Rochthuk
Sidjenlengden
a
,
b
{\displaystyle a,\,b}
A
=
a
⋅
b
{\displaystyle A=a\cdot b}
Triihuk
Grünjsidj
g
{\displaystyle g}
, Hööchde
h
{\displaystyle h}
luadrocht tu
g
{\displaystyle g}
A
=
g
⋅
h
2
{\displaystyle A={\frac {g\cdot h}{2}}}
Trapeets
Parallel tuenööder sidjen
a
,
c
{\displaystyle a,\,c}
, Hööchde
h
{\displaystyle h}
luadrocht tu
a
{\displaystyle a}
an
c
{\displaystyle c}
A
=
a
+
c
2
⋅
h
{\displaystyle A={\frac {a+c}{2}}\cdot h}
Rüt
Diagonaalen
d
1
{\displaystyle d_{1}}
an
d
2
{\displaystyle d_{2}}
A
=
d
1
⋅
d
2
2
{\displaystyle A={\frac {d_{1}\cdot d_{2}}{2}}}
Paraleelogram
Sidjenlengde
a
{\displaystyle a}
, Hööchde
h
a
{\displaystyle h_{a}}
luadrocht tu
a
{\displaystyle a}
A
=
a
⋅
h
a
{\displaystyle A=a\cdot h_{a}}
Krais
Raadius
r
{\displaystyle r}
A
=
π
r
2
{\displaystyle A=\pi r^{2}}
Elips
Grat an letj hualewaaksen
a
{\displaystyle a}
an
b
{\displaystyle b}
A
=
π
a
b
{\displaystyle A=\pi ab}
Likmiatag Sokshuk
Sidjenlengde
a
{\displaystyle a}
A
=
3
3
2
a
2
{\displaystyle A={\frac {3{\sqrt {3}}}{2}}a^{2}}
Fjuurflak
Lik Kraiskeegel me ufwöölet Mentel
Objekt
Betiaknangen
Areaal
A
{\displaystyle A}
Tiarling
Sidjenlengde
a
{\displaystyle a}
A
=
6
a
2
{\displaystyle A=6a^{2}}
Rochtkant
Sidjenlengden
a
,
b
,
c
{\displaystyle a,\,b,\,c}
A
=
2
(
a
b
+
a
c
+
b
c
)
{\displaystyle A=2(ab+ac+bc)}
Fjuurflak
Sidjenlengde
a
{\displaystyle a}
A
=
3
a
2
{\displaystyle A={\sqrt {3}}\,a^{2}}
Kuugel
Raadius
r
{\displaystyle r}
A
=
4
π
r
2
{\displaystyle A=4\pi r^{2}}
Türn
Grünjraadius
r
{\displaystyle r}
, Hööchde
h
{\displaystyle h}
A
=
2
π
r
(
r
+
h
)
{\displaystyle A=2\pi r(r+h)}
Keegel
Grünjraadius
r
{\displaystyle r}
, Hööchde
h
{\displaystyle h}
A
=
π
r
(
r
+
r
2
+
h
2
)
{\displaystyle A=\pi r(r+{\sqrt {r^{2}+h^{2}}})}
Ring
Bütjenraadius
R
{\displaystyle R}
, Banenraadius
r
{\displaystyle r}
A
=
4
π
2
⋅
R
⋅
r
{\displaystyle A=4\pi ^{2}\cdot R\cdot r}