A Binomisk Formeln san en wai uun a matematiik , am det moolnemen faan sumen ianfacher tu maagin. Jo halep uk bi't bröögreegnin mä sumen.
Det wurd binomisk komt faan bi (tau) an Nomen (nööm).
(
a
+
b
)
n
=
∑
k
=
0
n
(
n
k
)
a
n
−
k
⋅
b
k
{\displaystyle (a+b)^{n}=\sum _{k=0}^{n}{\binom {n}{k}}a^{n-k}\cdot b^{k}}
,
n
∈
N
{\displaystyle n\in \mathbb {N} }
(
a
+
b
)
2
=
a
2
+
2
⋅
a
⋅
b
+
b
2
{\displaystyle (a+b)^{2}=a^{2}+2\cdot a\cdot b+b^{2}}
iarst Binomisk Formel (Plus-Formel)
(
a
−
b
)
2
=
a
2
−
2
⋅
a
⋅
b
+
b
2
{\displaystyle (a-b)^{2}=a^{2}-2\cdot a\cdot b+b^{2}}
ööder Binomisk Formel (Minus-Formel)
(
a
+
b
)
⋅
(
a
−
b
)
=
a
2
−
b
2
{\displaystyle (a+b)\cdot (a-b)=a^{2}-b^{2}}
traad Binomisk Formel (Plus-Minus-Formel)
Troch moolnemen koon am a formeln bewise:
(
a
+
b
)
2
=
(
a
+
b
)
⋅
(
a
+
b
)
=
a
⋅
a
+
a
⋅
b
+
b
⋅
a
+
b
⋅
b
=
a
2
+
2
⋅
a
⋅
b
+
b
2
{\displaystyle (a+b)^{2}=(a+b)\cdot (a+b)=a\cdot a+a\cdot b+b\cdot a+b\cdot b=a^{2}+2\cdot a\cdot b+b^{2}}
(
a
−
b
)
2
=
(
a
−
b
)
⋅
(
a
−
b
)
=
a
⋅
a
−
a
⋅
b
−
b
⋅
a
+
b
⋅
b
=
a
2
−
2
⋅
a
⋅
b
+
b
2
{\displaystyle (a-b)^{2}=(a-b)\cdot (a-b)=a\cdot a-a\cdot b-b\cdot a+b\cdot b=a^{2}-2\cdot a\cdot b+b^{2}}
(
a
+
b
)
⋅
(
a
−
b
)
=
a
⋅
a
−
a
⋅
b
+
b
⋅
a
−
b
⋅
b
=
a
2
−
b
2
{\displaystyle (a+b)\cdot (a-b)=a\cdot a-a\cdot b+b\cdot a-b\cdot b=a^{2}-b^{2}}
A formeln halep uk bi't hoodreegnin:
Bispal 1
37
2
=
(
30
+
7
)
2
=
30
2
+
2
⋅
30
⋅
7
+
7
2
=
900
+
420
+
49
=
1369
{\displaystyle 37^{2}=(30+7)^{2}=30^{2}+2\cdot 30\cdot 7+7^{2}=900+420+49=1369}
Bispal 2
17
⋅
13
=
(
15
+
2
)
⋅
(
15
−
2
)
=
15
2
−
2
2
=
225
−
4
=
221
{\displaystyle 17\cdot 13=(15+2)\cdot (15-2)=15^{2}-2^{2}=225-4=221}
Det Kwadroot as (a+b) lung an briad. Jo letj kwadrooten a² an b² paase diar jüst iin, an tau likedenang rochthuken a·b bliiw auer.
Sodenang as
(
a
+
b
)
2
=
a
2
+
2
⋅
a
⋅
b
+
b
2
{\displaystyle (a+b)^{2}=a^{2}+2\cdot a\cdot b+b^{2}}
Uun't ööder bil as a² det blä kwadroot. Wan diarütj det kwadroot wurd skal, wat (a-b) lung an briad as, namst dü jo tau ruad rochthuken wech, diar a·b grat san. Nü heest dü diarmä oober b² tweisis wechnimen, diaram skal am det iansis weder diartutääl.
Sodenang as
(
a
−
b
)
2
=
a
2
−
2
⋅
a
⋅
b
+
b
2
{\displaystyle (a-b)^{2}=a^{2}-2\cdot a\cdot b+b^{2}}
Uun't traad bil as a² det laacht- an jonkblä kwadroot. Woort det letj kwadroot b² wechnimen, an det rochthuk, wat auerblaft, oner bihinget, jaft det en rochthuk, wat (a-b) briad an (a+b) huuch as.
Sodenang as
a
2
−
b
2
=
(
a
+
b
)
⋅
(
a
−
b
)
{\displaystyle a^{2}-b^{2}=(a+b)\cdot (a-b)}